Abstract

Summary The field of organic solar cells has seen rapid developments after the report of a high-efficiency (15.7%) small molecule acceptor (SMA) named Y6. In this paper, we design and synthesize a family of SMAs with an aromatic backbone identical to that of Y6 but with different alkyl chains to investigate the influence of alkyl chains on the properties and performance of the SMAs. First, we show that it is beneficial to use branched alkyl chains on the nitrogen atoms of the pyrrole motif of the Y6. In addition, the branching position of the alkyl chains also has a major influence on material and device properties. The SMA with 3rd-position branched alkyl chains (named N3) exhibits optimal solubility and electronic and morphological properties, thus yielding the best performance. Further device optimization using a ternary strategy allows us to achieve a high efficiency of 16.74% (and a certified efficiency of 16.42%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.