Abstract

Vascular calcification (VC) predicts cardiovascular morbidity and mortality in chronic kidney disease (CKD). To date, the underlying mechanisms remain unclear. We detected leukocyte DNA N6-methyladenine (6mA) levels in patients with CKD with or without aortic arch calcification. We used arteries from CKD mice infected with vascular smooth muscle cell-targeted (VSMC-targeted) adeno-associated virus encoding alkB homolog 1 (Alkbh1) gene or Alkbh1 shRNA to evaluate features of calcification. We identified that leukocyte 6mA levels were significantly reduced as the severity of VC increased in patients with CKD. Decreased 6mA demethylation resulted from the upregulation of ALKBH1. Here, ALKBH1 overexpression aggravated whereas its depletion blunted VC progression and osteogenic reprogramming in vivo and in vitro. Mechanistically, ALKBH1-demethylated DNA 6mA modification could facilitate the binding of octamer-binding transcription factor 4 (Oct4) to bone morphogenetic protein 2 (BMP2) promoter and activate BMP2 transcription. This resulted in osteogenic reprogramming of VSMCs and subsequent VC progression. Either BMP2 or Oct4 depletion alleviated the procalcifying effects of ALKBH1. This suggests that targeting ALKBH1 might be a therapeutic method to reduce the burden of VC in CKD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.