Abstract

To find out the reasons responsible for the diversity of igneous rocks forming the alkaline-ultrabasic carbonatite Krestovskiy massif (the Maimecha–Kotui province, Russia) we have studied melt inclusions in clinopyroxene of trachydolerites, porphyric melanephelinites, and tholeiites. It was established that the homogenization temperatures of inclusions in these rocks are rather close: 1140–1180 °C, 1190–1230 °C, and 1150–1210 °C, respectively. Compositions of melt inclusions in clinopyroxenes from different rocks are significantly different. The chemical composition of clinopyroxene of trachydolerites corresponds to that of trachybasalts and their derivatives. The inclusions are enriched in Sr, Ba, P, and S and their total sum of alkalies (at K ≥ Na) is never less than 5–6 wt.%. Inclusions from the rims of clinopyroxene phenocrysts in porphyric melanephelinites are similar in composition also to inclusions in trachydolerites. But in the cores of clinopyroxene phenocrysts the composition of inclusions corresponds to nephelinite melt. The composition of some melt inclusions in the intermediate and cores zones of clinopyroxene from porphyric melanephelinite has high SiO 2 (53–55 wt.%), MgO (8–9 wt.%) and a low (1–2 wt.%) total sum of alkalies (at Na ≥ K) and is depleted in Al 2O 3 (6–7 wt.%), which is similar to the composition of basaltic komatiites. The composition of inclusions in tholeiites is also basic, highly magnesian, and low-alkaline, Sr and Ba are rare to absent. Compared to the inclusions of basaltic komatiite composition, the inclusions in tholeiites are enriched in Al and depleted in Ca, Ti, and P. The melts trapped in clinopyroxenes from different rocks contain low (0.014–0.018 wt.%) water but they are enriched in F: from 0.37 wt.% in nephelinite melts to 0.1–0.06 wt.% in tholeiite and basaltic komatiite melts. Inclusions in all the rocks under study, host clinopyroxene, and the rocks themselves are significantly enriched in incompatible elements (1–2 orders of magnitude relative to the mantle norm). In tholeiites, the partitioning of these elements is rather uniform, while in trachydolerites and especially in melanephelinites it is contrasting with a drastic depletion in HREE relative to LREE, MREE, and HFSE. A conclusion is made that the Krestovskiy massif was formed by no less than three mantle-derived magmas: melanephelinite, tholeiite and basaltic komatiite. Magmas were generated in different magma sources at different depths with various degrees of enrichment in incompatible elements. These magmas were, most likely, dominated by melanephelinite magma. In intermediate chambers this magma differentiated to form derivative melts of nephelinite, trachydolerite–trachyandesite–trachyte compositions. Komatiite-basalt melts were, most likely, derivatives of primitive meimechite magmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.