Abstract

We report segregation between the athermal active and passive particles mediated by the local alignment interaction in a confined space. The competition between the alignment interaction and self-propulsion force results in a transition between disordered and ordered phases. We show that as the coordination between the particles increases, they form an ordered mill, which helps the particles to aggregate into isotropic clusters. As a result, particles segregate into active core and passive shells. This segregation phenomenon is adversely affected by the packing fraction and the size dispersion between active and passive particles. We show that this adverse effect can be overcome by incorporating higher coordination in the system. We report that the monodispersed system is more desirable for segregation in a binary mixture than a bidispersed system, as the latter favors the mixed state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.