Abstract
In this research work we fabricated two ultrafine conductive nanofibrous layers to investigate the materilas composition and their properties for the preparation of supercapacitor materials application. In first layer, a polymer and a conductive polymer were used and second layer was a composition of polymer, conductive polymer and carbon-base material. In both cases align and randomized mat of conductive nanofibers were fabricated using electrospinning set up. Conductive poly (3,4-ethylenedioxythiophene)/ polystyrene sulfonate (PEDOT:PSS) nanofibers were electrospun by dissolving fiber-forming polymer and polyvinyl alcohol (PVA) in an aqueous dispersion of PEDOT:PSS. The effect of addition of reduced graphene oxide (RGO) was considered for nanocomposite layer. The ultrafine conductive polymer fibers and conductive nanocomposite fibrous materials were also fabricated using an electrospinning process. A fixed collector and a rotating drum were used for random and align nanofibers production, respectively. The resulted fibers were characterized and analyzed by SEM, FTIR and two-point probe conductivity test. The average diameter of nanofibers measured by ImageJ software indicated that the average fiber diameter for first layer was 100 nm and for nanocomposite layer was about 85 nm. The presence of PEDOT:PSS and RGO in the nanofibers was confirmed by FT-IR spectroscopy. The conductivity of align and random layers was characterized. The conductivity of PEDOT:PSS nanofibers showed higher enhancement by addition of RGO in aqueous dispersion. The obtained results showed that alignment of fibrous materials can be considered as an engineering tool for tuning the conductivity of fibrous materials for many different applications such as supercapacitors, conductive and transparent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.