Abstract
Many vertex-partitioning problems can be expressed within a general framework introduced by Telle and Proskurowski. They showed that optimization problems in this framework can be solved in polynomial time on classes of graphs with bounded tree-width. In this paper, we consider a very similar framework, in relationship with more general classes of graphs: we propose a polynomial time algorithm on classes of graphs with bounded clique-width for all the optimization problems in our framework. These classes of graphs are more general than the classes of graphs with bounded tree-width in the sense that classes of graphs with bounded tree-width have also bounded clique-width (but not necessarily the inverse).Our framework includes problems such as independent (dominating) set, p-dominating set, induced bounded degree subgraph, induced p-regular subgraph, perfect matching cut, graph k-coloring and graph list-k-coloring with cardinality constraints (fixed k). This paper thus provides a second (distinct) framework within which the optimization problems can be solved in polynomial time on classes of graphs with bounded clique-width, after a first framework (called MS1) due to the work of Courcelle, Makowsky and Rotics (for which they obtained a linear time algorithm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.