Abstract

This paper deals with a realistic variant of flowshop scheduling, namely the hybrid flexible flowshop. A hybrid flowshop mixes the characteristics of regular flowshops and parallel machine problems by considering stages with parallel machines instead of having one single machine per stage. We also investigate the flexible version where stage skipping might occur, i.e., not all stages must be visited by all jobs. Lastly, we also consider job sequence dependent setup times per stage. The optimization criterion considered is makespan minimization. While many approaches for hybrid flowshops have been proposed, hybrid flexible flowshops have been rarely studied. The situation is even worse with the addition of sequence dependent setups. In this study, we propose two advanced algorithms that specifically deal with the flexible and setup characteristics of this problem. The first algorithm is a dynamic dispatching rule heuristic, and the second is an iterated local search metaheuristic. The proposed algorithms are evaluated by comparison against seven other high performing existing algorithms. The statistically sound results support the idea that the proposed algorithms are very competitive for the studied problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.