Abstract
We prove that there exists an amalgam of two finite 4-nilpotent semigroups such that the corresponding amalgamated product has an undecidable word problem. We also show that the problem of embeddability of finite semigroup amalgams in any semigroups and the problem of embeddability of finite semigroup amalgams into finite semigroups are undecidable. We use several versions of Minsky algorithms and Slobodskoj's result about undecidability of the universal theory of finite groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.