Abstract

In this paper, we introduce an algorithmic process to associate Leibniz algebras with combinatorial structures. More concretely, we have designed an algorithm to automatize this method and to obtain the restrictions over the structure coefficients for the law of the Leibniz algebra and so determine its associated combinatorial structure. This algorithm has been implemented with the symbolic computation package Maple. Moreover, we also present another algorithm (and its implementation) to draw the combinatorial structure associated with a given Leibniz algebra, when such a structure is a (pseudo)digraph. As application of these algorithms, we have studied what (pseudo)digraphs are associated with low-dimensional Leibniz algebras by determination of the restrictions over edge weights (i.e. structure coefficients) in the corresponding combinatorial structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.