Abstract
To propose an algorithm for automatic detection of diabetic retinopathy (DR) lesions based on ultra-widefield scanning laser ophthalmoscopy (SLO). The algorithm utilized the FasterRCNN (Faster Regions with CNN features)+ResNet50 (Residua Network 50)+FPN (Feature Pyramid Networks) method for detecting hemorrhagic spots, cotton wool spots, exudates, and microaneurysms in DR ultra-widefield SLO. Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate. Feature fusion was carried out by the feature pyramid network FPN, which significantly improved lesion detection rates in SLO fundus images. By analyzing 1076 ultra-widefield SLO images provided by our hospital, with a resolution of 2600×2048 dpi, the accuracy rates for hemorrhagic spots, cotton wool spots, exudates, and microaneurysms were found to be 87.23%, 83.57%, 86.75%, and 54.94%, respectively. The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO, providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.