Abstract
The implementation of a library of basic functions for the construction and analysis of planar quintic Pythagorean-hodograph (PH) curves is presented using the complex representation. The special algebraic structure of PH curves permits exact algorithms for the computation of key properties, such as arc length, elastic bending energy, and offset (parallel) curves. Single planar PH quintic segments are constructed as interpolants to first-order Hermite data (end points and derivatives), and this construction is then extended to open or closed C 2 PH quintic spline curves interpolating a sequence of points in the plane. The nonlinear nature of PH curves incurs a multiplicity of formal solutions to such interpolation problems, and a key aspect of the algorithms is to efficiently single out the unique “good” interpolant among them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.