Abstract

Dense colonization of mucoid Pseudomonas aeruginosa within the self-secreted extracellular matrix (mainly alginate), called biofilm, is a principal reason for the failure of antimicrobial therapy in cystic fibrotic patients. Alginate is a key component in the biofilm of mucoid P. aeruginosa and responsible for surface adhesion and stabilization of biofilm. To overcome this problem, alginate lyase functionalized chitosan nanoparticles of ciprofloxacin were developed for the effective treatment of P. aeruginosa infection in cystic fibrosis patients. The developed nanoparticles were found to have desired quality attributes and demonstrated sustained release following the Higuchi release kinetics. Drug compatibility with the chitosan was confirmed by FTIR while powder X-ray diffraction analysis confirmed the entrapment of drug within the nanoparticle matrix. Lactose adsorbed NPs showed promising aerodynamic property. Nanoparticles showed prolonged MIC and significant reduction in biofilm aggregation and formation in planktonic bacterial suspension. Nanoparticles exhibited significantly higher inhibitory effect against biofilm of P. aeruginosa and reduced the biomass, thickness and density confirmed by confocal microscopy. Furthermore, developed nanoparticles were haemocompatible and did not exhibit any toxicity in vitro MTT assay and in vivo on lungs male Wistar rats. The data in hand collectively suggest the proposed strategy a better alternative for the effective treatment of cystic fibrosis infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.