Abstract

Alginates have been widely explored due to their salient advantages of hydrophilicity, biocompatibility, mucoadhesive features, bioavailability, environmentally-benign properties, and cost-effectiveness. They are applied for designing micro- and nanosystems for controlled and targeted drug delivery and cancer therapy as alginate biopolymers find usage in encapsulating anticancer drugs to improve their bioavailability, sustained release, pharmacokinetics, and bio-clearance. Notably, these nanomaterials can be applied for photothermal, photodynamic, and chemodynamic therapy of cancers/tumors. Future explorations ought to be conducted to find novel alginate-based (nano)systems for targeted cancer therapy using advanced drug delivery techniques with benefits of non-invasiveness, patient compliance, and convenience of drug administration. Thus, some critical parameters such as mucosal permeability, stability in the gastrointestinal tract environment, and drug solubility ought to be considered. In addition, the comprehensive clinical translational studies along with the optimization of synthesis techniques still need to be addressed. Herein, we present an overview of the current state of knowledge and recent developments pertaining to the applications of alginate-based micro- and nanosystems for targeted cancer therapy based on controlled drug delivery, photothermal therapy, and chemodynamic/photodynamic therapy approaches, focusing on important challenges and future directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.