Abstract

A hierarchy of integrable semi-discrete equations is deduced in terms of the discrete zero curvature equation as well as its bi-Hamiltonian structure is gotten through the trace identity. The above hierarchy is separated into soluble ordinary differential equations according to the relationship between the elliptic variables and the potentials, from which the continuous flow is straightened out via the Abel–Jacobi coordinates resorting to the algebraic curves theory. Eventually, the meromorphic function and the Baker–Akhiezer function are introduced successively on the hyperelliptic curve and the algebro-geometric solutions which are expressed as Riemann theta function can be obtained through the two functions mentioned above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.