Abstract

Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi(DP)equationarecastinthesamepeakonfamily,theypossessthe second- and third-order Lax operators, respectively. From the viewpoint of algebro- geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyperelliptic curves lead to great difficulty in the construction of algebro- geometric solutions of the DP equation. In this paper, we study algebro-geometric solutions for the derivative Burgers (DB) equation, which is derived by Qiao and Li (2004) as a short wave model of the DP equation with the help of functional gradient and a pair of Lenard operators. Based on the characteristic polynomial of a Lax matrix for the DB equation, we introduce a third order algebraic curve Kr −1 with genus r − 1, from which the associated Baker-Akhiezer functions, meromorphic function, and Dubrovin-type equations are constructed. Furthermore, the theory of algebraic curve is applied to derive explicit representations of the theta function for the Baker- Akhiezerfunctionsandthemeromorphicfunction.Inparticular,thealgebro-geometric solutions are obtained for all equations in the whole DB hierarchy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.