Abstract

We study the optimization of the expected long-term reward in finite partially observable Markov decision processes over the set of stationary stochastic policies. In the case of deterministic observations, also known as state aggregation, the problem is equivalent to optimizing a linear objective subject to quadratic constraints. We characterize the feasible set of this problem as the intersection of a product of affine varieties of rank one matrices and a polytope. Based on this description, we obtain bounds on the number of critical points of the optimization problem. Finally, we conduct experiments in which we solve the KKT equations or the Lagrange equations over different boundary components of the feasible set, and we compare the result to the theoretical bounds and to other constrained optimization methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.