Abstract

MapReduce platforms such as Hadoop are now the de facto standard for large-scale data processing, but they have significant limitations for join-intensive workloads typical in Semantic Web processing. This article overviews an algebraic optimization approach based on a Nested TripleGroup Data Model and Algebra (NTGA) that minimizes overall processing costs by reducing the number of MapReduce cycles. It also presents an approach for integrating NTGA-based processing of graph pattern queries into Apache Pig and compares it to execution plans using relational-style algebra operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.