Abstract

ABSTRACT An algal population growth model integrated with toxicokinetics was developed for assessing the effect of pesticides on population dynamics. This model is a simple one-compartment, first-order kinetic model in which toxicity (growth inhibition and mortality) depends on the intracellular effective concentration of a pesticide at a target site. The model's parameters were derived using an experimental study that investigated the effects of pretilachlor, bensulfuron-methyl, pentoxazone, and quinoclamine on the growth, mortality, and subsequent population recovery of the green alga Pseudokirchneriella subcapitata. Modeled and measured trajectories of algal population dynamics agreed well. The effect on population recovery was underestimated by the model that ignored the toxicokinetics. The four tested herbicides had a variety of toxicity characteristics and physicochemical properties, indicating the wide range of the model's applicability. Moreover, the developed model and the obtained model's parameters were extrapolated to predict long-term algal population dynamics under time-varying herbicide exposure. The calculated integral biomass lost compared with the control was considered a quantitative index of the population-level ecological risk. The model's prediction showed that the same exposure level (peak concentration is equivalent to EC50) indicated much different population-level effect depending on the herbicide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.