Abstract

Rostromedial tegmental nucleus (RMTg) GABA neurons exert a primary inhibitory drive onto midbrain dopamine neurons and are excited by a variety of aversive stimuli. There is, however, little evidence that the RMTg-ventral tegmental area (VTA)-nucleus accumbens shell (Acb) circuit plays a role in the aversive consequences of alcohol withdrawal. This study was performed in adult male Long-Evans rats at 48-h withdrawal from chronic alcohol drinking in the intermittent schedule. These rats displayed clear anhedonia and depression-like behaviors, as measured with the sucrose preference, and forced swimming tests. These aberrant behaviors were accompanied by a substantial increase in cFos expression in the VTA-projecting RMTg neurons, identified by a combination of immunohistochemistry and retrograde-tracing techniques. Pharmacological or chemogenetic inhibition of RMTg neurons mitigated the anhedonia and depression-like behaviors. Ex vivo electrophysiological data showed that chemogenetic inactivation of RMTg neurons reduced GABA release and accelerated spontaneous firings of VTA dopamine neurons. Finally, using a functional hemispheric disconnection procedure, we demonstrated that inhibition of unilateral RMTg, when combined with activation of D1 and D2 dopamine receptors in the contralateral (but not ipsilateral) Acb, mitigated the anhedonia and depression-like behaviors in alcohol-withdrawal rats. These data show that the integrity in the RMTg-VTA-Acb pathway in a single hemisphere is sufficient to elicit depression-like behavior during ethanol-withdrawal. Overall, the present results reveal that the RMTg-VTA-Acb pathway plays a crucial role in the depression-like behavior in animals undergoing alcohol withdrawal, further advocating the RMTg as a potential therapeutic target for alcoholism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.