Abstract

In the present work, 5083Al matrix composites reinforced by 10 vol% AlCoCrFeNi high-entropy alloy (HEA) particles were fabricated by submerged friction stir processing (SFSP). It was found that the fabricated composites consist of equiaxed fine grains with the mean size of 1.2 μm due to dynamic recrystallization, particle stimulated nucleation (PSN) and shortened thermal cycle by water cooling. The HEA/5083Al interface showed a two-layer structure, the layer close to the HEA exhibited FCC + T phases with the thickness of approximately100 nm, and the other layer consisted of the Cr-depleted AlCoCrFeNi HEA particles in the size of roughly 100 nm. The SFSPed HEA/5083Al composites showed 25.1% higher yield stress (YS) and 31.9% higher ultimate tensile strength (UTS) in comparison with the base metal while maintaining acceptable ductility (18.9%). Grain refinement, geometrically necessary dislocations and load transfer effect can mainly be responsible for the improved strength. • SFSP were conducted on AlCoCrFeNi high entropy particles reinforced aluminum matrix composites. • CDRX, PSN and shortened thermal cycle by water cooling can be responsible for the grain refinement. • The interface structure was characterized to investigate the interface formation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.