Abstract

It remains a great challenge to explore the facile way to fabricate multi-component nanoparticles in theranostic nanomedicine. Herein, an albumin nanoreactor templated synthesis of theranostic Gd2O3/CuS hybrid nanodots (NDs) has been developed for multimodal imaging guided photothermal tumor ablation. Gd2O3/CuS NDs are found to possess particle size of 4.4 ± 1.1 nm, enhanced longitudinal relaxivity, effective photothermal conversion of 45.5%, as well as remarkable near-infrared fluorescence (NIRF) from Cy7.5-conjugated on albumin corona. The Gd2O3/CuS NDs further exhibited good photostability, enhanced cellular uptake, and preferable tumor accumulation. Thus, the Gd2O3/CuS NDs generate remarkable NIRF imaging and T 1-weighted magnetic resonance (MR) imaging, and simultaneously result in effective photothermal tumor ablation upon irradiation. The albumin nanoreactor provides a facile and general strategy to synthesize multifunctional nanoparticles for cancer theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.