Abstract

BackgroundThe mouse Grueneberg ganglion (GG) is an olfactory subsystem specialized in the detection of volatile heterocyclic compounds signalling danger. The signalling pathways transducing the danger signals are only beginning to be characterized.ResultsScreening chemical libraries for compounds structurally resembling the already-identified GG ligands, we found a new category of chemicals previously identified as bitter tastants that initiated fear-related behaviours in mice depending on their volatility and evoked neuronal responses in mouse GG neurons. Screening for the expression of signalling receptors of these compounds in the mouse GG yielded transcripts of the taste receptors Tas2r115, Tas2r131, Tas2r143 and their associated G protein α-gustducin (Gnat3). We were further able to confirm their expression at the protein level. Challenging these three G protein-coupled receptors in a heterologous system with the known GG ligands, we identified TAS2R143 as a chemical danger receptor transducing both alarm pheromone and predator-derived kairomone signals.ConclusionsThese results demonstrate that similar molecular elements might be used by the GG and by the taste system to detect chemical danger signals present in the environment.

Highlights

  • The mouse Grueneberg ganglion (GG) is an olfactory subsystem specialized in the detection of volatile heterocyclic compounds signalling danger

  • In our approach to identify the signalling pathways activated by danger signals, we took advantage of the chemical structure of previously identified GG ligands [3, 19] to screen chemical libraries, and we found a category of compounds already known as bitter tastants

  • Identification of a new category of ligands for Grueneberg ganglion neurons Using as bait the chemical structures of the mouse alarm pheromone (AP) SBT and of the predator-derived kairomones [3, 19], which are sulphated and nitrogenated heterocyclic compounds, we identified a new category of putative GG ligands that possess a chemically related structure (Fig. 1a)

Read more

Summary

Introduction

The mouse Grueneberg ganglion (GG) is an olfactory subsystem specialized in the detection of volatile heterocyclic compounds signalling danger. We have discovered the structure of one mouse AP, 2-sec-butylthiazoline (SBT) [3] (Fig. 1a). This molecule is emitted in different stressful situations by mice of both sexes, and it induces the mentioned fearrelated behaviours and increases corticosterone levels in conspecifics. SBT is detected by the neurons of the Grueneberg ganglion (GG), an olfactory subsystem located at the tip of the nose [4,5,6,7,8,9].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.