Abstract
BackgroundThe present study examines the hypothesis that Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling is increased in hypertrophic and decreased in atrophic denervated muscle. Protein expression and phosphorylation of Akt1, Akt2, glycogen synthase kinase-3beta (GSK-3beta), eukaryotic initiation factor 4E binding protein 1 (4EBP1), 70 kD ribosomal protein S6 kinase (p70S6K1) and ribosomal protein S6 (rpS6) were examined in six-days denervated mouse anterior tibial (atrophic) and hemidiaphragm (hypertrophic) muscles.ResultsIn denervated hypertrophic muscle expression of total Akt1, Akt2, GSK-3beta, p70S6K1 and rpS6 proteins increased 2–10 fold whereas total 4EBP1 protein remained unaltered. In denervated atrophic muscle Akt1 and Akt2 total protein increased 2–16 fold. A small increase in expression of total rpS6 protein was also observed with no apparent changes in levels of total GSK-3beta, 4EBP1 or p70S6K1 proteins. The level of phosphorylated proteins increased 3–13 fold for all the proteins in hypertrophic denervated muscle. No significant changes in phosphorylated Akt1 or GSK-3beta were detected in atrophic denervated muscle. The phosphorylation levels of Akt2, 4EBP1, p70S6K1 and rpS6 were increased 2–18 fold in atrophic denervated muscle.ConclusionsThe results are consistent with increased Akt/mTOR signaling in hypertrophic skeletal muscle. Decreased levels of phosphorylated Akt (S473/S474) were not observed in denervated atrophic muscle and results downstream of mTOR indicate increased protein synthesis in denervated atrophic anterior tibial muscle as well as in denervated hypertrophic hemidiaphragm muscle. Increased protein degradation, rather than decreased protein synthesis, is likely to be responsible for the loss of muscle mass in denervated atrophic muscles.
Highlights
The present study examines the hypothesis that Akt/mTOR signaling is increased in hypertrophic and decreased in atrophic denervated muscle
The present study examines the hypothesis that the activities of Akt and mTOR are increased in hypertrophic muscle and decreased in atrophic muscle using a model of denervated skeletal muscles
Six days after denervation anterior tibial muscles were atrophic with a wet weight of 44.1 ± 1.8 mg (n = 8) compared to 55.1 ± 1.7 mg (n = 8) for innervated controls (p < 0.001, Student’s t-test, Figure 1)
Summary
The present study examines the hypothesis that Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling is increased in hypertrophic and decreased in atrophic denervated muscle. Protein expression and phosphorylation of Akt, Akt, glycogen synthase kinase-3beta (GSK-3beta), eukaryotic initiation factor 4E binding protein 1 (4EBP1), 70 kD ribosomal protein S6 kinase (p70S6K1) and ribosomal protein S6 (rpS6) were examined in six-days denervated mouse anterior tibial (atrophic) and hemidiaphragm (hypertrophic) muscles. Protein synthesis is influenced by Akt through at least two different mechanisms, including effects on glycogen synthase kinase-3β (GSK-3β) and on mTOR activity. GSK-3β is a direct substrate of Akt which by phosphorylation of S9 inhibits GSK-3β mediated phosphorylation of eukaryotic initiation factor 2B (eIF2B) thereby activating eIF2B resulting in increased protein synthesis GSK-3β is a direct substrate of Akt which by phosphorylation of S9 inhibits GSK-3β mediated phosphorylation of eukaryotic initiation factor 2B (eIF2B) thereby activating eIF2B resulting in increased protein synthesis (see e.g. [13]). mTOR, on the other hand, is activated indirectly by Akt through phosphorylation of TSC2 in the TSC1/TSC2 (hamartin/tuberin) heterodimer that inhibits mTOR signaling (see [14])
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.