Abstract

ABSTRACT This study was undertaken to compare different non-linear models for fitting growth curves of Polled Nellore animals as well as to estimate genetic parameters for the components of the growth curve. The study involved body weight-age data of 6,717 Polled Nellore cattle from birth to 650 days of age, which belonged to the Brazilian Association of Zebu Breeders (ABCZ), corresponding to the period from 1980 to 2011. Four non-linear models (Brody, Bertalanffy, Logistic, and Gompertz) were fitted and compared by the adjusted coefficient of determination (R2adj), mean absolute deviation of residuals (MAD), root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC). To estimate the genetic parameters and genetic values of asymptotic weight (A), integration constant (B), and maturation rate (K), the Bayesian inference method was adopted. The Brody model showed the lowest values of MAD, RMSE, AIC, and BIC and the highest R2adj. Heritability estimates for parameters A, B, and K were 0.11, 0.16, and 0.30, respectively, whereas genetic correlations were 0.01 (A-B), -0.91 (A-K), and 0.24 (B-K). The Brody model provided the best fit. The K parameter shows enough genetic variability for selection in the herd. Heavier animals in adulthood tend to exhibit lower growth rates. Despite the low heritability estimate of parameter A, there were genetic gains, indicating that selection is being efficient on asymptotic weight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.