Abstract
This study presents the airside performance of the fin-and-tube heat exchangers having plain fin geometry with a larger diameter tube ( D c = 15.88 mm) under dehumidifying condition. A total of nine samples of heat exchangers subject to change of the number of tube row and fin pitch are made and tested. It is found that the effect of fin pitch on the sensible j factor is, in general, diminished with the rise of tube row. However, there is a unique characteristic of fin pitch at a shallow tube row, the heat transfer performance is first increased at a wider pitch but a further increase of fin pitch lead to a falloff of heat transfer performance due to interactions amid flow development and bypass flow. The influence of tube row on the airside performance is rather small for both heat transfer and frictional characteristics at a fin pitch of 2.1 mm and when the Reynolds number is less than 4000. A slight deviation of this effect is encountered when fin pitch is increased to 2.54 mm or 3.1 mm due to condensate adhered phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.