Abstract

Hydrogel microspheroids are widely used in tissue engineering, such as injection therapy and 3D cell culture, and among which, heterogeneous microspheroids are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous microspheroids that can reconstruct built-up tissues' microarchitecture with excellent resolution and spatial organization in limited sizes. Here, a novel airflow-assisted 3D bioprinting method is reported, which can print versatile spiral microarchitectures inside the microspheroids, permitting one-step bioprinting of fascinating hydrogel structures, such as the spherical helix, rose, and saddle. A microfluidic nozzle is developed to improve the capability of intricate cell encapsulation with heterotypic contact. Complex structures, such as a rose, Tai chi pattern, and single cell line can be easily printed in spheroids. The theoretical model during printing is established and process parameters are systematically investigated. As a demonstration, a human multicellular organoid of spirally vascularized ossification is reconstructed with this method, which shows that it is a powerful tool to build mini tissues on microspheroids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.