Abstract

A 3D computational model was developed to study the flow and the transport and deposition of nano-size particle in a realistic human nasal passage. The nasal cavity was constructed from a series of MRI images of coronal sections of a nose of a live human subject. For several breathing rates associated with low or moderate activities, the steady state flows in the nasal passage were simulated numerically. The airflow simulation results were compared with the available experimental data for the nasal passage. Despite the anatomical differences of the human subjects used in the experiments and computer model, the simulation results were in qualitative agreement with the experimental data. Deposition and transport of ultrafine particles (1 to 100 nm) in the nasal cavity for different breathing rates were also simulated using an Eulerian-Lagrangian approach. The simulation results for the nasal capture efficiency were found to be in reasonable agreement with the available experimental data for a number of human subjects given typical anatomical differences. The computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate especially for the particles smaller than 20 nm. Based on the simulated results, a semi-empirical equation for the capture efficiency of the nasal passage for nano-size particles was fitted in terms of Peclet number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.