Abstract
Aircraft wake is a pair of counter-rotating vortices generated behind the aircraft, which can greatly impact the safety of fast takeoff and landing of aircraft and limit the improvement of airport capacity. The current wake parameter retrieval methods cannot locate the wake vortex's position and estimate its strength level in real time. To deal with this issue, a novel algorithm based on YOLOv5s deep learning network is proposed. The new algorithm establishes single vortex locating concept to adapt the wake vortex's evolution at complicate background wind field conditions, and proposes strength-based classification standard which can represent the real-time hazard of wake vortex to shorten the takeoff and landing intervals. Meanwhile, EIOU loss function is introduced to improve the precision of YOLOv5s network. Compared with the state-of-the-art object detection approaches, such as Cascade R-CNN, FCOS, and YOLOv5l, the superiority of new method is demonstrated in terms of accuracy and robustness by using the field detection data from Hong Kong International Airport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.