Abstract
Coronavirus disease 2019 (COVID-19), due to infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is now causing a global pandemic. Aerosol transmission of COVID-19, although plausible, has not been confirmed by the World Health Organization (WHO) as a general transmission route. Considering the rapid spread of SARS-CoV-2, especially nosocomial outbreaks and other superspreading events, there is an urgent need to study the possibility of airborne transmission and its impact on the lung, the primary body organ attacked by the virus. Here, we review the complete pathway of airborne transmission of SARS-CoV-2 from aerosol dispersion in air to subsequent biological uptake after inhalation. In particular, we first review the aerodynamic and colloidal mechanisms by which aerosols disperse and transmit in air and deposit onto surfaces. We then review the fundamental mechanisms that govern regional deposition of micro- and nanoparticles in the lung. Focus is given to biophysical interactions between particles and the pulmonary surfactant film, the initial alveolar-capillary barrier and first-line host defense system against inhaled particles and pathogens. Finally, we summarize the current understanding about the structural dynamics of the SARS-CoV-2 spike protein and its interactions with receptors at the atomistic and molecular scales, primarily as revealed by molecular dynamics simulations. This review provides urgent and multidisciplinary knowledge toward understanding the airborne transmission of SARS-CoV-2 and its health impact on the respiratory system.
Highlights
Coronavirus disease 2019 (COVID-19), due to infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), is currently causing a global pandemic, with more than 53 million confirmed cases and 1 million deaths, as of November 15, 2020, in more than 200 countries, areas, and territories in the world.[1]
Emerging epidemiological data suggest that black communities are affected disproportionately hard by COVID-19.2,3 they account for only 13% of the United States population, African Americans constitute 24% of COVID-19 deaths, nearly twice of what would be expected based on their share of the national population.[4]
Engineering, physical, and chemical sciences have much to contribute toward the global fight against the COVID-19 pandemic
Summary
Coronavirus disease 2019 (COVID-19), due to infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), is currently causing a global pandemic, with more than 53 million confirmed cases and 1 million deaths, as of November 15, 2020, in more than 200 countries, areas, and territories in the world.[1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.