Abstract

When the transmitter is in motion, the airborne passive bistatic radar (PBR) has a complex clutter geometry and lacks independent and identically distributed training samples in clutter estimation and suppression. In order to solve these problems, this paper proposes a space–time adaptive processing (STAP) algorithm based on root off-grid sparse Bayesian learning. The proposed algorithm first models the space–time base of the dictionary as an adjustable state. Then, the positions of those dynamic bases are optimized by iterating a maximum expectation algorithm. In this way, the off-grid error in clutter estimation can be eliminated even when the modeling grid is wide. To further improve the accuracy of clutter estimation, the proposed algorithm eliminates the error caused by samples with singular values in the root off-grid sparse Bayes learning by artificially adding pseudorandom noise and using hypothesis testing. The simulation results show that the proposed algorithm achieves better performance than the existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.