Abstract
BackgroundCoronavirus disease 2019 (COVID-19) pandemic provided an opportunity for the environment to reduce ambient pollution despite the economic, social and health disruption to the world. The purpose of this study was to investigate the changes in the air quality indexes (AQI) in industrial, densely populated and capital cities in different countries of the world before and after 2020. In this ecological study, we used AQI obtained from the free available databases such as the World Air Quality Index (WAQI). Bivariate correlation analysis was used to explore the correlations between meteorological and AQI variables. Mean differences (standard deviation: SD) of AQI parameters of different years were tested using paired-sample t-test or Wilcoxon signed-rank test as appropriate. Multivariable linear regression analysis was conducted to recognize meteorological variables affecting the AQI parameters.ResultsAQI-PM2.5, AQI-PM10 and AQI-NO2 changes were significantly higher before and after 2020, simultaneously with COVID-19 restrictions in different cities of the world. The overall changes of AQI-PM2.5, AQI-PM10 and AQI-NO2 in 2020 were – 7.36%, – 17.52% and – 20.54% compared to 2019. On the other hand, these results became reversed in 2021 (+ 4.25%, + 9.08% and + 7.48%). In general, the temperature and relative humidity were inversely correlated with AQI-PM2.5, AQI-PM10 and AQI-NO2. Also, after adjusting for other meteorological factors, the relative humidity was inversely associated with AQI-PM2.5, AQI-PM10 and AQI-NO2 (β = − 1.55, β = − 0.88 and β = − 0.10, P < 0.01, respectively).ConclusionsThe results indicated that air quality generally improved for all pollutants except carbon monoxide and ozone in 2020; however, changes in 2021 have been reversed, which may be due to the reduction of some countries’ restrictions. Although this quality improvement was temporary, it is an important result for planning to control environmental pollutants.
Highlights
The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus emerged from Wuhan, China [1] and caused more than 250 million infectedSarmadi et al Environmental Sciences Europe (2021) 33:134 and coinciding with the pandemic declaration of the disease by the World Health Organization (WHO) on 11 March 2020 [6], many countries put temporary closures of their industries and jobs on the agenda and on the other hand, restrictions within cities were seriously pursued in most countries [7]
The results of the present study showed that the air quality indexes (AQI) of the first 4 months of the year in most cities in 2020, compared to the period before the COVID-19 pandemic (2019), has significantly improved; this has been reversed for many cities in 2021 (Figs. 4, 5)
The findings showed that the average AQI-PM2.5 in 2020 compared to 2019 and 2018 was decreased by about 7% and 15% and AQI-PM10 declined by 18% and 24%, which indicates an overall improvement in Particulate matter (PM) quality (Fig. 6A, B)
Summary
Sarmadi et al Environmental Sciences Europe (2021) 33:134 and coinciding with the pandemic declaration of the disease by the World Health Organization (WHO) on 11 March 2020 [6], many countries put temporary closures of their industries and jobs on the agenda and on the other hand, restrictions within cities were seriously pursued in most countries [7]. These actions include restrictions on inter-city and intra-city traffic, closing businesses, closure of schools and small communities, suspension of tourist visas and so on. Multivariable linear regression analysis was conducted to recognize meteorological variables affecting the AQI parameters
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.