Abstract

The poor air quality in the London metropolis has sparked our interest in studying the time series dynamics of air pollutants in the city. The dataset consists of roadside and background air quality for seven standard pollutants: nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), ozone (O3), particulate matter (PM10 and PM2.5) and sulphur dioxide (SO2), using fractional integration to investigate issues such as persistence, seasonality and time trends in the data. Though we notice a large degree of heterogeneity across pollutants and a persistent behaviour based on a long memory pattern is observed practically in all cases. Seasonality and decreasing linear trends are also found in some cases. The findings in the paper may serve as a guide to air pollution management and European Union (EU) policymakers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.