Abstract

Abstract In a convective boundary layer, coherent structures were detected through their thermal signature on an artificial turf surface using high-frequency thermal infrared (TIR) imagery and surface layer turbulence measurements. The coherent structures cause surface temperature variations over tens of seconds and spatial scales of tens to a few hundred meters. Evidence of processes similar to those in a renewal event was observed. Spatial and temporal correlation analysis revealed the geometric and velocity information of the structures at the ground footprint of air temperature measurements. The velocity of the coherent structures was consistent with the wind speed at 6.5 m AGL. Practical implications of turbulence-driven surface temperature variability for thermal remote sensing are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.