Abstract

This paper investigates numerically the flow and heat transfer in air (Pr=0.71) by mixed convection past a heated square cylinder under aiding buoyancy effect in a confined channel. The numerical simulations are performed in the range of parameters 20≤Re≤45 and 1.61x10 3 ≤Gr≤6.33x10 3 for a fixed blockage ratio D/L of 0.1. The combination in the present study of these two Re and Gr parameters is reduced so that the Richarson number varies from 0,8 to 8, in order to neglect neither free convection (Ri 10). The steady two-dimensional governing equations are solved by the finite volume formulation using the open source OpenFoam® code. The representative flow structure, isotherm patterns and local Nusselt number evolution are presented and discussed. The effect of both the Reynolds number and the buoyancy parameter on the fluid flow and the heat transfer are also analyzed. It is found that the wake region size strongly depends on both Reynolds and Grashof numbers and this region is shown to increase in size increasing the Reynolds number and/or decreasing the Grashof number. Moreover, increasing the Reynolds number leads to a heat transfer enhancement more pronounced on the front face of the obstacle, whereas increasing the Grashof number leads to a heat transfer enhancement more pronounced on the side faces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.