Abstract

Neurodegenerative pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, HIV-associated neurocognitive disorder, and others significantly affect individuals, their families, caregivers, and healthcare systems. While there are no cures yet, researchers worldwide are actively working on the development of novel treatments that have the potential to slow disease progression, alleviate symptoms, and ultimately improve the overall health of patients. Huge volumes of new scientific information necessitate new analytical approaches for meaningful hypothesis generation. To enable the automatic analysis of biomedical data we introduced AGATHA, an effective AI-based literature mining tool that can navigate massive scientific literature databases, such as PubMed. The overarching goal of this effort is to adapt AGATHA for drug repurposing by revealing hidden connections between FDA-approved medications and a health condition of interest. Our tool converts the abstracts of peer-reviewed papers from PubMed into multidimensional space where each gene and health condition are represented by specific metrics. We implemented advanced statistical analysis to reveal distinct clusters of scientific terms within the virtual space created using AGATHA-calculated parameters for selected health conditions and genes. Partial Least Squares Discriminant Analysis was employed for categorizing and predicting samples (122 diseases and 20889 genes) fitted to specific classes. Advanced statistics were employed to build a discrimination model and extract lists of genes specific to each disease class. Here we focus on drugs that can be repurposed for dementia treatment as an outcome of neurodegenerative diseases. Therefore, we determined dementia-associated genes statistically highly ranked in other disease classes. Additionally, we report a mechanism for detecting genes common to multiple health conditions. These sets of genes were classified based on their presence in biological pathways, aiding in selecting candidates and biological processes that are exploitable with drug repurposing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.