Abstract

Accurate short-term forecasting of public transport demand is essential for the operation of on-demand public transport. Knowing where and when future demands for travel are expected allows operators to adjust timetables quickly, which helps improve service quality and reliability and attract more passengers to public transport. This study addresses this need by developing AI-based deep learning models for prediction of bus passenger demands based on actual patronage data obtained from the smart-card ticketing system in Melbourne. The models, which consider the temporal characteristics of travel demand for some of the heaviest bus routes in Melbourne, were developed using real-world data from 18 bus routes and 1,781 bus stops. LSTM and BiLSTM deep learning models were evaluated and compared with five conventional deep learning models using the same data set. A desktop comparison was also undertaken against a number of established demand forecasting models that have been reported in the literature over the past decade. The comparative evaluation results showed that BiLSTM models outperformed other models tested and was able to predict passenger demands with over 90% accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.