Abstract

Talaromyces marneffei causes life-threatening infections in immunocompromised hosts. An efficient tool for genetic manipulation of T. marneffei will allow for increased understanding of this thermally dimorphic fungus. Agrobacterium tumefaciens-mediated transformation (ATMT) was optimized for targeted gene disruption in T. marneffei using the plasmid pDHt/acuD::pyrG. Molecular analyses of transformants were performed by PCR,Southern blot and semi-quantitative RT-PCR. A. tumefaciens strain EHA105 was more efficient at transformation than strain AGL-1 in ATMT via solid co-cultivation. An A. tumefaciens:T. marneffei ratio of 1000:1 in an ATMT liquid co-cultivation led to a relatively high transformation efficiency of 90 transformants per 106 yeast cells. Using ATMT-mediated knockout mutagenesis, we successfully deleted the acuD gene in T. marneffei. PCR and Southern blot analysis confirmed that acuD was disrupted and that the foreign pyrG gene was integrated into T. marneffei. Semi-quantitative RT-PCR analysis further confirmed that pyrG was expressed normally. These results suggest that ATMT can be a potential platform for targeted gene disruption in T. marneffei and that liquid co-cultivation may provide new opportunities to develop clinical treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.