Abstract
Paclitaxel is the most profitable drug ever developed in cancer chemotherapy; however, the yield of paclitaxel from microbial platforms is still far from the commercial purpose. Thus, this study was conducted to explore the possibility of solid-state fermentation (SSF) for production of paclitaxel by fungal fermentation. Different agro-industrial wastes were screened as solid substrates for production of paclitaxel by the endophytic Aspergillus fumigatus TXD105 under SSF. Sugarcane bagasse followed by wheat bran, and rice bran were the most suitable substrates for maximum production of paclitaxel. In the effort to increase the paclitaxel production, selection of the most proper moistening agent that supports the production of paclitaxel by the fungal strain was investigated. The effect of varying inoculum concentrations on the production of paclitaxel was also studied. Moreover, optimization of SSF conditions (moisture level, substrate concentrations and nutrients concentration) was adopted using response surface methodology. SSF carried out under the optimum conditions of 20g sugarcane bagasse, twofold nutrients concentration of the MM1D broth, 80% moisture level and inoculum concentration of 107 spores per ml intensified the paclitaxel concentration to 145·61mgkg-1 which represents a 10-fold increase. The production of paclitaxel by the fungal strain was further improved via exposure to UV and gamma radiation at specific doses. The paclitaxel concentrations were intensified following UV and gamma radiation to 209·91 and 351·82mgkg-1 . This is the first report on the production of paclitaxel using agro-industrial wastes as cheap source that may contribute in lowering the cost of producing paclitaxel. These findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.