Abstract
Drug tolerance is directly correlated with drug abuse and physical dependence. The development of tolerance is manifested as the decline in pharmacological responses of drugs following repeated administration of the constant dose. The present study evaluated the effect of agmatine in ethanol-induced anti-nociception and tolerance in the tail-flick assay in mice. In an acute protocol, ethanol (1 and 2g/kg, i.p. [intraperitoneally]) and agmatine (20 and 40 μg/mouse, i.c.v. [intracerebroventricularly]) produced significant analgesic effects in mice, as was evident from the increased baseline tail-flick latency when tested 20 minutes after their administration. Agmatine in a per se non-effective dose (5 μg/mouse, i.c.v.), L-arginine (40 μg/mouse, i.c.v.), and arcaine (25 μg/mouse, i.c.v.) significantly potentiated the anti-nociceptive effect of ethanol. Blood ethanol analysis showed no significant differences in blood ethanol concentration between ethanol/saline- and ethanol/agmatine-treated mice, suggesting that the effects of agmatine were not due to any possible effects on the pharmacokinetics of ethanol. In a separate study, mice were injected with ethanol (2g/kg, i.p., 12%) or saline (1mL/kg, i.p.) once daily for 9 days. On days 1, 3, 5, 7, and 9 of the experiment, they were subjected to the tail-flick test. Agmatine (5-20 μg/mouse, i.c.v.), L-arginine (40 μg/mouse, i.c.v.), arcaine (25 μg/mouse, i.c.v.), aCSF (2 μL/mouse, i.c.v.), or saline (1mL/kg, i.p.) was administered daily prior to the first daily ethanol or saline injections, and reaction latencies were determined in the tail-flick assay. Injections of agmatine, L-arginine, and arcaine prevented the development of tolerance to ethanol-induced analgesia. Given that agmatine and its endogenous modulation can prevent tolerance to the anti-nociceptive effects of ethanol, these data suggest it as a possible new therapeutic strategy for the treatment of alcohol use disorder and associated complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.