Abstract

The electrical resistance decay of a metallic granular packing has been measured as a function of time. This measurement gives information about the size of the conducting cluster formed by the well connected grains. Several regimes have been encountered. Chronologically, the first one concerns the growth of the conducting cluster and is identified to belong to diffusion processes through a stretched exponential behavior. The relaxation time is found to be simply related to the initial injected power. This regime is followed by a reorganization process due to thermal dilatation. For the long-term behavior of the decay, an aging process occurs and enhances the electrical contacts between grains through microsoldering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.