Abstract

Maximal oxygen uptake and exercise performance typically decline with age. However, there are indications of preserved vascular function and blood flow regulation during arm exercise. Yet, it is unknown if this potential physiological preservation with age is mirrored in peripheral metabolic capacity and V̇o2/W ratio. Thus, to investigate the effects of aging in the arms, we measured metabolic and vascular responses to 6-min bouts of dynamic handgrip exercise at 40% and 80% of maximal work rate (WRmax) in 11 young (26 ± 2 yr) and 12 old (80 ± 6 yr) males, applying Doppler-ultrasound combined with blood samples from a deep forearm vein. At baseline, the old had a larger arterial diameter compared with young (P < 0.001). During exercise, the two groups reached the same WRmax. V̇o2, blood flow, and oxygen supply were higher (40%WRmax; 80%WRmax, all P < 0.01), and arteriovenous oxygen difference was lower (80%WRmax, P < 0.02), in old compared with young. Old also had a higher oxygen excess at 80%WRmax (P < 0.01) than young, whereas no difference in muscle diffusion or oxygen extraction was detected. Only young exhibited an increase in intensity-induced arterial dilation (P < 0.05), and they had a lower mean arterial pressure than old at 80%WRmax (P < 0.001). V̇o2/W (40%WRmax; 80%WRmax) was reduced in old compared with young (both P < 0.05). In conclusion, in old and young males with a similar handgrip WRmax, old had a higher V̇o2 during 80%WRmax intensity, achieved by an increased blood flow. This may be a result of the available cardiac output reserve, compensating for reduced work efficiency and attenuated vascular response observed in old.NEW & NOTEWORTHY Contrasting the typically observed decline in V̇o2max with age, the current study reveals an age-related increase in forearm metabolic capacity during handgrip exercise in old, mediated by an increased forearm blood flow. Exercise with a small muscle mass in arms, where central components of the oxygen transport are not limiting, allows old to attain a similar maximal work rate as young despite their increased V̇o2/W ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.