Abstract

Testes in aging mammals undergo a variety of age-related changes, such as reduction of size, lower sperm output, an increase in abnormal forms of sperm, and endocrine malfunctions. It has been suggested that the spermatogenic defects are due to loss and dysfunction of spermatogonial stem cells as well as deterioration of the tubule microenvironment. In the present study, we explore the depletion and recovery of spermatogenesis in young (3 month) and old (12 month) mice exposed to cooling, X-irradiation (5 Gy) or cytotoxic treatment using Busulfan (40 mg/kg). We aim to determine a potential age-related change of vulnerability to gonadotoxic treatments by describing the intensity of spermatogenic depletion and the degree of spermatogenic recolonization with qualitative and quantitative parameters on organ weights and histological parameters at two time points (2 weeks, depletion; 6 weeks, recovery). Our data reveal specific acute effects of cooling on multinucleation of germ cells but no other severe injury. Irradiation and Busulfan-treatment exerted the expected depletional wave of germ cells leading to severe testicular injury and spermatogenic failure. The recovery of spermatogenesis occurred in both treatment groups and both age groups to a similar extent. We therefore noted no prominent age-related differences in spermatogenic depletion and recovery in any treatment group. We conclude that in both age groups, the remaining spermatogonial stem cells are capable to induce spermatogenic recovery and the aging tubule microenvironment at 1 year has not become more vulnerable to irradiation, Busulfan-treatment or testicular cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.