Abstract

The production of nanoparticles in concentrated suspensions requires strict control of the stability of the systems which are strongly influenced by the physico-chemical properties and the hydrodynamic conditions they are placed in. This study deals with the analysis of the aggregation processes of a colloidal silica suspension destabilized by addition of salt under different flows: a turbulent flow performed in a stirred tank, a pure shear flow created thanks to a Couette geometry and an extensional flow obtained in a four-roll mill (Taylor cell). During the aggregation process, the silica suspensions behave as shear-thinning fluids and the variation of their apparent viscosity can be related to the evolution of the size distribution of the aggregates in the suspension. Pure shear and turbulent flows at an equivalent strain rate exhibit almost the same behaviour. The viscosity and the aggregate size decrease with the shear rate. On the contrary, the apparent viscosity and the aggregate size distributions were not very sensitive to a change of an extensional constraint within the considered range. Indeed, although aggregates obtained in the Taylor cell were bigger than in the Couette cell, the apparent viscosity was higher in the latter case. Different aggregate structures, characterized by their fractal dimension, were finally predicted depending on the hydrodynamic nature of the main flow under which they were produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.