Abstract

Nanoplastics (NPs) pollution of aquatic systems is becoming an emerging environmental issue due to their stable structure, high mobility, and easy interactions with ambient contaminants. Effective removal technologies are urgently needed to mitigate their toxic effects. In this study, we systematically investigated the removal effectiveness and mechanisms of a commonly detected nanoplastics, carboxyl-modified polystyrene (PS-COOH) via coagulation and sedimentation processes using aluminum chloride (AlCl3) as a coagulant. PS-COOH appeared as clearly defined and discrete spherical nanoparticles in water with a hydrodynamic diameter of 50 nm. The addition of 10 mg/L AlCl3 compressed and even destroyed the negatively charged PS-COOH surface layer, decreased the energy barrier, and efficiently removed 96.6% of 50 mg/L PS-COOH. The dominant removal mechanisms included electrostatic adsorption and intermolecular interactions. Increasing the pH from 3.5 to 8.5 sharply enhanced the PS-COOH removal, whereas significant loss was observed at pH 10.0. High temperature (23 °C) favored the removal of PS-COOH compared to lower temperature (4 °C). High PS-COOH removal efficiency was observed over the salinity range of 0 − 35‰. The presence of positively charged Al2O3 did not affect the PS-COOH removal, while negatively charged SiO2 reduced the PS-COOH removal from 96.6% to 93.2%. Moreover, the coagulation and sedimentation process efficiently removed 90.2% of 50 mg/L PS-COOH in real surface water even though it was rich in inorganic ions and total organic carbon. The fast and efficient capture of PS-COOH by AlCl3 via a simple coagulation and sedimentation process provides a new insight for the treatment of NPs from aqueous environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.