Abstract

To characterize the environmental transport and health risks of CeO2 nanoparticles (NPs), it is important to understand their aggregation behavior. This study investigates the aggregation kinetics of CeO2 NPs in KCl and CaCl2 solutions using time-resolved dynamic light scattering (TR-DLS). The initial hydrodynamic radius of CeO2 NPs measured by DLS was approximately 95 nm. Attachment efficiencies were derived both from aggregation data and predictions based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The deviations of the DLVO predictions were corrected by employing the extended DLVO (EDLVO) theory. The critical coagulation concentration (CCC) of CeO2 NPs at pH = 5.6 is approximately 34 mM for KCl and 9.5 mM for CaCl2. Furthermore, based on the EDLVO theory and the von Smoluchowski’s population balance equation, a model accounting for diffusion-limited aggregation (DLA) kinetics was established. For the reaction-limited aggregation (RLA) kinetics, a model that takes fractal geometry into account was established. The models fitted the experimental data well and proved to be useful for predicting the aggregation kinetics of CeO2 NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.