Abstract

This study presents a novel model of homogalacturonan (HG) based on the dissipative particle dynamics (DPD). The model was applied to investigate the mechanism of self-aggregation of low-methoxylated homogalacturonan in aqueous solutions in the absence of cations. The coarse-grained model provided new insights into the structural features of HG aggregates and networks in aqueous solutions. Depending on the properties and concentration of polysaccharides, two major patterns of self-assembly were observed for HG - ellipsoidal aggregates and a continuous three-dimensional network. Simulations showed that a decrease in the degree of dissociation of HG results in a higher rate of self-aggregation, as well as facilitating the formation of larger assemblies or thicker nanofilaments depending on the type of final self-assembly. Simulations of polysaccharides of different chain lengths suggested the existence of a structural threshold for the formation of a spatial network for HG consisting of less than 35 GalA units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.