Abstract

In the synthesis of nanostructures by pulsed laser deposition (PLD), a crucial role is played by the environmental deposition pressure and the substrate temperature. Due to the high temperature of nanoparticles (NPs) at landing, other factors may determine the structure of the resulting aggregates. Here, Au and TiO2 nanostructures are obtained by non-thermal fs-PLD in ambient conditions. On Si(100), only TiO2 NPs form fractals with areas up to ~ 1 × 106 nm2, while on quartz Au NPs also form fractals with areas up to ~ 5 × 103 nm2, a much smaller size with respect to the TiO2 case. The aggregation is described by a simple diffusive model, taking into account isotropic diffusion of the NPs, allowing quantitative simulations of the NPs and fractal area. The results highlight the key role of substrate thermal conductivity in determining the formation of fractals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.