Abstract
The surface charge and average size of manufactured ZnO nanoparticles (NPs) were studied as a function of pH to understand the aggregation behavior and importance of the electrostatic interactions in solution. The interactions between ZnO and Suwannee River humic acid (SRHA) were then investigated under a range of environmentally relevant conditions with the ZnO nanoparticles pHPZC as the point of reference. The anionic charges carried by aquatic humic substances were found to play a major role in the aggregation and disaggregation of ZnO nanoparticles. At low concentrations of SRHA (<0.05mg/L) and below the pHPZC, anionic SRHA was rapidly adsorbed onto the positively charged ZnO NPs hence promoting aggregation. With similar SHRA concentrations, at pHPZC, SRHA was able to control the suspension behavior of the ZnO and promote partial disaggregation in small volumes. This was more distinguishable when the pH was greater than pHPZC as SRHA formed a surface coating on the ZnO nanoparticles and enhanced stability via electrostatic and steric interactions. In most cases, the NP coating by SRHA induced disaggregation behavior in the ZnO nanoparticles and decreased the aggregate size in parallel to increasing SRHA concentrations. Results also suggest that environmental aquatic concentration ranges of humic acids largely modify the stability of aggregated or dispersed ZnO nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.