Abstract

Through phase-amplitude analysis, this study investigated how low-frequency postural fluctuations interact with high-frequency scalp electroencephalography (EEG) amplitudes, shedding light on age-related mechanic differences in balance control during uneven surface navigation. Twenty young (24.1 ± 1.9 years) and twenty older adults (66.2 ± 2.7 years) stood on a training stabilometer with visual guidance, while their scalp EEG and stabilometer plate movements were monitored. In addition to analyzing the dynamics of the postural fluctuation phase, phase-amplitude coupling (PAC) for postural fluctuations below 2 Hz and within EEG sub-bands (theta: 4-7 Hz, alpha: 8-12 Hz, beta: 13-35 Hz) was calculated. The results indicated that older adults exhibited significantly larger postural fluctuation amplitudes(p <0.001) and lower mean frequencies of the postural fluctuation phase (p=0.005) than young adults. The PAC between postural fluctuation and theta EEG (FCz and bilateral temporal-parietal-occipital area), as well as that between postural fluctuation and alpha EEG oscillation, was lower in older adults than in young adults (p <0.05). In contrast, the PAC between the phase of postural fluctuation and beta EEG oscillation, particularly in C3 (p= 0.006), was higher in older adults than in young adults. In summary, the postural fluctuation phase and phase-amplitude coupling between postural fluctuation and EEG are sensitive indicators of the age-related decline in postural adjustments, reflecting less flexible motor state transitions and adaptive changes in error monitoring and visuospatial attention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.