Abstract

In view of the importance of amyloid beta protein accumulation in Alzheimer's disease, this paper examines age-related amyloid beta protein (Abeta) deposition and accompanying cellular changes in a mouse model in vivo. Transgenic mice were studied which expressed a gene encoding 18 residues of signal peptide and 99 residues of the carboxyl-terminal fragment (CTF) of the Abeta precursor, under the control of the cytomegalovirus enhancer/chicken beta-actin promoter. In the pancreas, Abeta accumulated in an age-dependent manner. Abeta deposits appeared as early as 3 weeks of age and increased in size and number from 4 to 16 months of age. The largest Abeta deposits were observed in the transgenic pancreas at 16 and 20 months of age. Haematoxylin and eosin staining, macrophage immunostaining, and electron microscopy showed that the Abeta fibril deposits closely correlated with degeneration of pancreatic acinar cells and macrophage activation. Abeta1-42 and Abetap3E-42 were predominant components of Abeta deposits among amino- and carboxyl-terminal modified Abeta species. These findings suggest that overproduction of Abeta causes age-related accumulation of Abeta fibrils, with accompanying cellular degeneration and macrophage activation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.